Самодельные измерительные приборы. Самодельные измерительные приборы Особенности измерений, или чтобы не попасть впростак


Измерители емкости и индуктивности, описанные в радиолюбительских журналах, довольно сложны схе­мотехнически, часто имеют определенные недостатки (в частности по пределам измерения). Кроме того, не­редки случаи, когда эти схемы измерителей выполне­ны с ошибками. Исходя из этого, я решил повторить схему широкополосного измерителя R, С, L, описанно­го в (все-таки книга с красивым названием, и цена этой книги по тем временам не очень маленькая). Я уже думал, что напрасно потерял время, изготавливая измеритель R, С, L , но потом, поразмыслив, создал свой измеритель R, С, L, использовав идею измерения R, С, L, изложенную в .

Схема простого измерителя RCL изображена на рис. 1. Прибор позволяет измерять сопротивления ре­зисторов от 1 Ом до 10 МОм в семи диапазонах (10; 100 Ом; 1; 10; 100 кОм; 1; 10 МОм), емкости конденса­торов от 100 пФ до 1000 мкФ (пределы -1000 пФ; 0,01; 0,1; 1; 10; 100; 1000 мкФ) и индуктивности катушек от 10 мГ до 1000 Г (пределы -100 мГ; 0,1; 1; 10; 100; 1000 Г). Питание измерителя R, С, L осуществляется от вторич­ной обмотки трансформатора Т1. Напряжение на этой обмотке приблизительно 18 В. Провод вторичной об­мотки трансформатора Т1 должен быть рассчитан на ток 1 А, первичной - на 0,1 А. Трансформатор Т1 дол­жен быть рассчитан на мощность не менее 20 Вт.

Схема прибора представляет собой измерительный мост переменного тока. Индикатором баланса моста служит вольтметр переменного тока Р1 с пределом из­мерения не ниже 20 В (лучше использовать цифровой вольтметр, измеряющий десятые, а еще лучше - сотые доли Вольта), подключаемый к клеммам ХЗ, Х4, или микроамперметр (миллиамперметр) постоянного тока Р2, подключенный к измерительной диагонали моста через гасящий резистор R12 (его сопротивление под­бирается экспериментально - при напряжении 18 В стрелка микроамперметра должна отклоняться на всю шкалу) и диодный мост VD1 ...VD4.

Род измерений выбирается переключателем SA3 на 3 положения: I (крайнее левое положение - измерение сопротивлений) - "R"; II - измерение емкостей - "С"; III - измерение индуктивностей - "L". В отдельных случаях при измерениях 0 прибора Р1 (Р2) может сохраняться, скажем, от отметки 4 шкалы переменного резистора R11 до отметки 6. В этом слу­чае величина измеряемого параметра равна 5. В режиме измерения сопротивлений Rx = R1 (R2...R7) R11 /R10. В режиме измерения емкости Сх = С1 R11 / R1 (R2...R7). В режиме измерения индуктивности Lx = С1 R11 R1 (R2...R7).

Применить подключение резистора сопротивлени­ем 1 Ом на переключатель SA1 для увеличения диа­пазона измерений не представляется возможным, т.к. на этом резисторе будет сравнительно малое напря­жение (приблизительно 1 В)и уравновесить мост пе­ременным резистором R11 сопротивлением 4,7 кОм практически невозможно.

Емкость конденсатора С1 применена сравнитель­но большой (2,5 мкФ) по похожей причине - если в качестве конденсатора С1 применить конденсатор с меньшей емкостью, его емкостное сопротивление бу­дет сравнительно большим на низкой частоте (50 Гц). Даже при емкости конденсатора С1 - 2,5 мкФ, изме­рение индуктивностей в положении 1 переключателя SA1 не представляется возможным. Точность измерения индуктивности предлагаемым измерителем R, С, L я не смог определить, так как у меня нет образцовых катушек сравнительно большой индуктивности, но не верить вышеприведенной фор­муле определения индуктивности Lx оснований нет.

К слову будь сказано, при измерении индуктивно­сти 0 прибор не показывает. При вращении движка резистора R11 напряжение на измерительной диаго­нали моста уменьшается, доходит до определенного уровня, а затем начинает увеличиваться. То положе­ние движка резистора R11, при котором прибор пока­зывает минимальное напряжение, и является величи­ной индуктивности Lx.

Я думаю, вышеприведенное обстоятельство объяс­няется тем, что для уравновешивания моста не учте­но активное сопротивление катушки индуктивности. Но, с другой стороны, это неважно, т.к. активное со­противление катушки не влияет на ее индуктивность и его спокойно можно измерить обычным омметром.

Погрешность измерения предлагаемого прибора напрямую зависит от самого конструктора. Тщательно подобрав образцовые резисторы R1 ...R7, конденсатор С1 и правильно расчертив шкалу переменного резис­тора R11, можно свободно добиться того, чтобы по­грешность прибора не превышала 2%.

Переменный резистор R11 - проволочный, жела­тельно открытой конструкции, чтобы можно было за­чищать от пыли и загрязнений резистивную поверх­ность. Я, например, в качестве резистора R11 приме­нил переменный проволочный резистор типа ППБ - ЗА. Конденсатор С1 составлен из двух конденсаторов - емкостью 1 мкФ и 1,5 мкФ, включенных параллельно.

Градуировка шкалы переменного резистора R11 производится при включении переключателя SA3 в по­ложение "R", a SA1 - в положение "3". К зажимам Х1, Х2 поочередно подключают образцовые резисторы со­противлением 100, 200, 300 Ом... 1 кОм и при каж­дом уравновешивании моста на шкале переменного резистора делают отметку. Промежутки между отмет­ками делят на 10 равных частей.

Конденсатор С1 подбирают, установив: SA1 - в по­ложение "5", SA3 - в положение "С". К зажимам моста Х1, Х2 подключают образцовый конденсатор емкос­тью 0,01 мкФ, движок переменного резистора R11 должен быть установлен на отметке "1" и при этом мост должен быть сбалансирован (0 на приборе). Калибровку моста в режиме измерения индуктив­ности можно не делать. Для удобства работы с измерителем R, С, L просто необходимо на лицевую панель наклеить таблицу с ди­апазонами измерений R, С, L. Внешний вид лицевой панели измерителя R, С, L показан на рис. 2.

Литература: [i]
1. Боровский В.П., Косенко В.И., Михайленко В.М., Партала О.Н.
2. Справочник по схемотехнике для радиолю бителя. - Киев. Техника. 1987 г.

Этот прибор измерительной лаборатории с достаточной для радиолюбительской практики точностью позволяет измерять: сопротивление резисторов-от 10 Ом до 10 МОм, емкость конденсаторов - от 10 пФ до 10 мкФ, индуктивность катушек и дросселей- от 10 ..20 мкГн до 8… 10 мГн. Метод измерения - мостовой. Индикация балансировки измерйтельного моста - звуковая с помощью головных телефонов. Точность измерений во многом зависит от тщательности подбора образцовых деталей и градуировки шкалы.

Принципиальная схема прибора изображена на рис. 53. Измеритель состоит из простейшего реохордного измерительного^ моста, генератора электрических колебаний звуковой частоты и усилителя тока. Питается прибор постоянным ♦напряжением 9 В, снимаемым с нерегулируемого выхода блока питания лаборатории. Прибор можно питать и от автономного источника, например батареи «Крона», аккумуляторной батареи 7Д-0,115 или двух соединенных последовательно батарей 3336J1. Прибор сохраняет работоспособность при снижении напряжения питания до 3… 4,5 В, однако громкость сигнала в телефонах, особенно при измерении небольших емкостей, в этом случае заметно падает.

Генератор, питающий измерительный мост, представляет собой симметричный мультивибратор на транзисторах VT1 и VT2. Конденсаторы С1 и С2 создают между коллекторными и базовыми цепями транзисторов положительную -обратную связь по переменному току, благодаря чему мультивибратор самовозбуждается и генерирует электрические колебания, близкие по форме к прямоугольным. Резисторы и конденсаторы мультивибратора подобраны таким образом, что он генерирует колебания частотой около 1000 Гц. Напряжение такой частоты воспроизводится телефонами (или динамической головкой) примерно как звук «си» второй октавы.

Рис. 53. Принципиальная схема измерителя RCL

Электрические ’колебания мультивибратора усиливаются усилителем на транзисторе VT3 и с его нагрузочного резистора R5 поступают в диагональ питания измерительного моста. Переменный резистор R5 выполняет функции реохорда. Плечо сравнения образуют образцовые резисторы R6-R8, конденсаторы СЗ-С5 и катушки индуктивности L1 и L2, поочередно включаемые з мост переключателем SA1. Измеряемый резистор R x или катушку индуктивности L x подсоединяют к зажимам ХТ1, ХТ2, а конденсатор С х - к зажимам ХТ2, ХТЗ. Головные телефоны BF1 включают в измерительную диагональ моста через гнезда XS1 и XS2 При любом виде измерений мост балансируют реохордом R5, добиваясь полного пропадания или наименьшей громкости звука в телефонах. Сопротивление R XJ емкость С х или индуктивность L x отсчитывают по шкале реохорда в относительных единицах.

Множители возле переключателя вида и пределов измерений SA1 показывают, на сколько ом, микрогенри. или ликофарад надо умножить отсчитанное по шкале показание, чтобы определить измеряемое сопротивление резистора, емкость конденсатора или индуктивность катушки. Так, например, если при балансе моста считанное со шкалы реохорда показание равно 0,5, а переключатель SA1 находится в положении «ХЮ 4 пФ», то емкость измеряемого конденсатора С х равна 5000 пФ (0,005 мкФ).

Резистор R6 ограничивает коллекторный τόκ транзистора VT3, возрастающий при измерении индуктивности, и тем самым предотвращает возможный тепловой пробой транзистора.

Конструкция и детали. Внешний вид и конструкция прибора показаны на рис. 54. Большая часть деталей размещена на монтажной плате из гетинакса, закрепленной в корпусе на П-образных кронштейнах высотой 35 мм. Под монтажной платой можно установить батарею автономного питания прибора. Переключатель SA1, выключатель питания Q1 и колодка с гнездами XS1, XS2 для подключения головных телефонов закреплены непосредственно на передней стенке корпуса.

Разметка отверстий в передней стенке корпуса показана на рис. 55. Прямоугольное отверстие размерами 30X15 мм в нижней части стенки, предназначено для выступающих вперед зажимов ХТ1-ХТЗ. Такое же отверстие в правой части стенки является «окном» шкалы, круглое отверстие под ним предназначено для валика переменного резистора R5. Отверстие диаметром 12,5 мм предназначено для выключателя питания, функции которого выполняет тумблер ТВ2-1, отверстие диаметром 10,5 мм - для галетного переключателя SA1 на 11 положений (используется только восемь) и одно направление. Пять отверстий диаметром 3,2 мм с зенковкой служат для винтов крепления гнездовой колодки, полочки с зажимами ХТ1-ХТЗ и кронштейна резистора R5, четыре отверстия диаметром 2,2 мм (также с зенковкой) - для заклепок крепления уголков, к которым привинчивают крышку.

Надписи, поясняющие назначение ручек управления, зажимов и гнезд, выполнены на плотной бумаге, которая затем накрывается пластиной из прозрачного органического стекла толщиной 2 мм. Для крепления этой накладки к корпусу использованы гайки выключателя питания Q1, переключателя SA1 и

Рис. 54. Внешний вид и конструкция измерителя RCL

три винта М2Х4, ввинченные в резьбовые отверстия в накладке с внутренней стороны корпуса.

Конструкция зажимов для подключения к прибору резисторов, конденсаторов и катушек индуктивности, параметры которых надо измерить, показана на рис. 56. Каждый зажим состоит из деталей 2 и 3, закрепленных на гетинахсовой плате 1 заклепками 4 Соединительные провода припаивают к монтажным лепесткам 5. Детали зажимов изготавливают из твердой латуни или бронзы толщиной 0,4… 0,5 мм. При работе с прибором нажимают на верхнюю часть детали 2 до совмещения отверстия в ней с отверстиями в нижней части этой же детали и детали 3 и вставляют в них вывод измеряемой детали. Необхо

Рис. 55. Разметка передней стенки корпуса

Рис. 56. Устройство колодки с зажимами для подсоединения выводов радиодеталей:

1-плата; 2, 3 - пружинящие контакты; 4 -заклепки; 5 - монтажный лепесток; 6 - -уголок

Рис. 57. Устройство шкального механизма:

лей желательно проверить на измерительном приборе заводского изготовления.

Образцовая катушка L1, индуктивность которой должна быть равна 100 мкГн, содержит 96 витков провода ПЭВ-1 0,2, намотанного виток к витку на цилиндрическом каркасе внешним диаметром 17,5 мм, или 80 витков такого же провода, намотанного на каркасе диаметром 20 мм. В качестве каркаса можно использовать картонные гильзы патронов для охотничьих ружей 20или 12-го калибра. Каркас катушки насажен на кружок, выпиленный из гетинакса и приклеенный к монтажной плате клеем БФ-2.

Индуктивность образцовой катушки L2 в десять раз больше (1 мГн). Она содержит 210 витков провода ПЭВ-1 0,12, намотанного на унифицированном трехсекционном полистироловом каркасе, и помещена в карбонильный броневой магнитопровод СБ-12а. Ее индуктивность подгоняют подстроечником, входящим в комплект магнитопровода. Последний приклеен к монтажной плате клеем БФ-2.

Индуктивность обеих катушек желательно подогнать до установки в измеритель. Лучше всего это сделать с помощью прибора заводского изготовления. Следует отметить, что если первую катушку изготовить точно по описанию, та она будет иметь близкую к необходимой индуктивность и по ней в собранном измерителе можно будет подогнать индуктивность второй катушки.

Налаживание прибора, градуировка шкалы. Если в измерителе использованы предварительно проверенные и отобранные транзисторы, резисторы и конденсаторы, мультивибратор и усилитель должны нормально работать без какого-либо налаживания. В этом нетрудно убедиться, соединив проволочной перемычкой зажимы ХТ1 и ХТ2 или ХТ2 и ХТЗ. В телефонах должен появиться звук, громкость которого изменяется при перемещении движка реохорда из одного крайнего положения в другое. Если звука нет, значит, допущена ошибка в монтаже мультивибратора или неправильно подключен источник питания.

Желательную высоту (тон) звука в телефонах можно подобрать изменением емкости конденсатора С1 или С2. С уменьшением их емкости высота звука повышается, а с увеличением - понижается.

Рис. 59. Шкала измерителя RCL

Поскольку шкала прибора общая для всех видов и пределов измерений, ее можно отградуировать на одном из пределов’ с помощью магазина сопротивлений. Допустим, что шкала прибора градуируется на поддиапазоне, соответствующем образцовому резистору R8 (10 кОм). Переключатель SA1 в этом случае устанавливают в положение «ХЮ 4 Ом», а к зажимам ХТ1 и ХТ2 подключают резистор сопротивлением 10 кОм. После этого мост балансируют, добиваясь пропадания звука в телефонах, и на шкале реохорда напротив стрелки делают исходную риску с отметкой 1. Она будет соответствовать сопротивлению 10 4 Ом, т. е. 10 кОм. Далее к прибору поочередно подключают резисторы сопротивлением 9, 8, 7 кОм и т. д. и делают на шкале отметки, соответствующие долям единицы. В дальнейшем отметка 0,9 на шкале реохорда при измерении сопротивлений этого поддиапазона будет соответствовать сопротивлению 9 кОм (0,9-10 4 Ом = 9000 Ом=9 кОм), отметка 0,8 - сопротивлению 8 кОм (0,8· 10 4 0м = 8000 Ом=8 кОм) и т. д. Далее к прибору подключают резисторы сопротивлением 15, 20, 25 кОм и т. д. и на шкале реохорда делают соответствующие отметки (1,5; 2; 2,5 и т. д). В результате получится шкала, образец которой показан на рис. 59.

Отградуировть шкалу можно также с помощью набора резисторов с допускаемым отклонением от номиналов не более ±5%. Соединяя резисторы параллельно или последовательно, можно получать практически любые значения «образцовых» резисторов.

Отградуированная таким способом шкала пригодна для других видов и пределов измерений только в том случае, если соответствующие им образцовые резисторы, конденсаторы и катушки индуктивности будут иметь параметры, указанные на принципиальной схеме прибора.

Пользуясь прибором, надо помнить, что при измерении емкости оксидных конденсаторов (вывод их положительной обкладки подключают к зажиму ХТЗ) баланс моста ощущается не так четко, как при измерении сопротивлений, поэтому и точность измерений в этом случае меньше. Объясняется такое явление утечкой тока, свойственной оксидным конденсаторам.

На, казалось бы, морально устаревшем контроллере 2051, мы не раз задумывались о том, чтобы собрать похожий измеритель, но на более современном контроллере, чтобы снабдить его дополнительными возможностями. Критерий поисков, в основном, был только один - это широкие диапазоны измерения. Однако, все аналогичные схемы, найденные в интернете, имели даже программное ограничение диапазонов, причём довольно значительное. Для справедливости стоит заметить, что вышеназванный прибор на 2051 вообще не имел ограничений (они были лишь аппаратными), а программно в нём даже были заложены возможности измерения - мега и -гига значений!

Как-то, изучая в очередной раз схемы, мы обнаружили полезнейший прибор - LCM3, обладающий приличным функционалом при небольшом количестве деталей. Прибор умеет в широчайших пределах измерять индуктивность, ёмкость неполярных конденсаторов, ёмкость электролитических конденсаторов, ESR, сопротивления (в том числе - сверхмалые), оценивать качество электролитических конденсаторов. Работает прибор на известном принципе измерения частоты, однако интересен тем, что генератор собран на встроенном в микроконтроллер PIC16F690 компараторе. Возможно, параметры этого компаратора не хуже, чем у LM311, ведь заявленные диапазоны измерений таковы:

  • ёмкость 1пФ - 1нФ с разрешением 0,1пФ и точностью 1%
  • ёмкость 1нФ - 100нФ с разрешением 1пФ и точностью 1%
  • ёмкость 100нФ - 1мкФ с разрешением 1нФ и точностью 2,5%
  • ёмкость электролитических конденсаторов 100нФ - 0,1Ф с разрешением 1нФ и точностью 5%
  • индуктивность 10нГн - 20Гн с разрешением 10нГн и точностью 5%
  • сопротивление 1мОм - 30Ом с разрешением 1мОм и точностью 5%
Более подробно ознакомиться с описанием прибора на венгерском можно на странице:

Применённые в измерителе решения нам понравились, и мы решили не собирать новый прибор на атмеловском контроллере, а применить PIC. От этого венгерского измерителя была взята частично (а затем - и полностью) схема. Затем была декомпилирована прошивка, и на её основе написана новая, под собственные нужды. Однако, авторская прошивка настолько хороша, что с ней прибор, наверное, не имеет аналогов.

Нажмите для увеличения
Особенности измерителя LCM3:

  • при включении прибор должен находиться в режиме измерения ёмкости (если же он находится в режиме измерения индуктивности, то соответствующей надписью на экране попросит перевести с другой режим)
  • танталовые конденсаторы должны быть с возможно меньшим ESR (менее 0,5 Ом). ESR конденсатора CX1 33нФ также должен быть низким. суммарный импеданс этого конденсатора, индуктивности и кнопки переключения режимов не должен превышать 2,2 Ом. Качество этого конденсатора вцелом должно быть очень хорошим, он должен иметь малый ток утечки, поэтому стоит выбирать из высоковольтных (например, на 630 вольт) - полипропилен (MKP), стирофлекс-полистирол (KS, FKS, MKS, MKY ?). Конденсаторы C9 и C10, как написано на схеме, - полистирол , слюда, полипропилен. Резистор сопротивлением 180 Ом должен иметь точность 1%, резистор 47 Ом также должен быть 1%.
  • прибор оценивает "качество" конденсатора. точной информации, какие именно параметры рассчитываются, нет. вероятно, это - утечка, тангенс угла потерь диэлектрика, ESR. "качество" отображается в виде закрашенного стаканчика: чем меньше он заполнен, тем лучше конденсатор. у неисправного конденсатора стаканчик закрашен полностью. однако, такой конденсатор можно применять в фильтре линейного стабилизатора.
  • дроссель, используемый в приборе, должен быть достаточно габаритным (выдерживать ток не менее 2А без насыщения) - в виде "гантельки" или на броневом сердечнике.
  • иногда при включении прибор выдаёт на экране "Low Batt". при этом нужно отключить и снова включить питание (вероятно, глюк).
  • имеется несколько версий прошивки данного прибора: 1.2-1.35, причём последняя, по словам авторов, оптимизирована для дросселя на броневом сердечнике. однако, на дросселе в виде гантельки она также работает и только в этой версии оценивается качество электролитических конденсаторов.
  • к прибору возможно подключить небольшую приставку для внутрисхемного (без выпаивания) измерения ESR электролитических конденсаторов. Она понижает напряжение, прилагаемое к проверяемому конденсатору, до 30мВ, при котором полупроводники не открываются и не влияют на измерение. Схему можно найти на авторском сайте.
  • Режим измерения ESR включается автоматически перетыканием щупов в соответствующее гнездо. Если при этом вместо электролитического конденсатора будет подключен резистор (до 30 Ом), то прибор автоматически переключится в режим измерения малых сопротивлений.
Калибровка в режиме измерения ёмкости:
  • нажать кнопку калибровки
  • отпустить кнопку калибровки
Калибровка в режиме измерения индуктивности:
  • замкнуть щупы прибора
  • нажать кнопку калибровки
  • дождаться появления сообщения R=....Ом
  • отпустить кнопку калибровки
  • дождаться сообщения об окончании калибровки
Калибровка в режиме измерения ESR:
  • замкнуть щупы прибора
  • нажать кнопку калибровки, на экране будут отображены напряжение, прилагаемое к измеряемому конденсатору (рекомендуемые значения - 130...150 мВ, завитит от дросселя, который нужно размещать подальше от металлических поверхностей) и частота измерения ESR
  • дождаться сообщения R=....Ом
  • отпустить кнопку калибровки
  • показания сопротивления на экране должны стать нулевыми
Реализована также возможность указать ёмкость калибровочного конденсатора вручную. Для этого собирается следующая схема и подключается к разъёму программирования (схему можно и не собирать, а просто замыкать нужные контакты):


Затем:

  • подключить схему (либо замкнуть vpp и gnd)
  • включить прибор и нажать кнопку калибровки, при этом на экране появится значение калибровочной ёмкости
  • кнопками DN и UP скорректировать значения (возможно, в разных версиях прошивки для ускоренной корректировки работают основные кнопки calibrate и mode)
  • в зависимости от версии прошивки, возможен и другой вариант: после нажатия кнопки калибровки, на экране появляется значения калибровочной ёмкости, которое начинает расти. Когда доходит до нужного значения, нужно остановить рост кнопкой mode и разомкнуть vpp и gnd. Если же не успели вовремя остановить и перескочили нужное значение, то кнопкой калибровки можно его уменьшить
  • отключить схему (либо разомкнуть vpp и gnd)
Авторская прошивка v1.35: lcm3_v135.hex

Печатная плата: lcm3.lay (один из вариантов с форума vrtp).

На прилагаемой печатной плате контрастность дисплея 16*2 задаётся делителем напряжения на резисторах сопротивлением 18к и 1к. При необходимости нужно подобрать сопротивление последнего. FB - ферритовый цилиндрик, вместо него можно поставить дроссель. Для большей точности вместо резистора 180 Ом используются два по 360 в параллель. Перед установкой кнопки калибровки и переключателя режимов измерения, обязательно проверьте тестером их распиновку: часто встречается такая, которая не подходит.


Корпус для прибора, следуя традиции (раз , два), сделан из пластмассы и окрашен краской "чёрный металлик". Изначально прибор питался от зарядного устройства для мобильного телефона 5В 500мА через гнездо mini-USB. Это - не лучший вариант, так как питание подключалось к плате измерителя уже после стабилизатора, а насколько оно стабильно в зарядке от телефона - неизвестно. Затем внешнее питание было заменено на литиевый аккумулятор с модулем зарядки и повышающим преобразователем , возможные помехи от которого прекрасно убираются обычным LDO стабилизатором , присутствующим на схеме.


В заключение хочется добавить, что автор вложил в этот измеритель максимум возможностей, сделав его незаменимым для радиолюбителя.

Огромная подборка схем, руководств, инструкций и другой документации на различные виды измерительной техники заводского изготовления: мультиметры, осциллографы, анализаторы спектра, аттенюаторы, генераторы, измерители R-L-C, АЧХ, нелинейных искажений, сопротивлений, частотомеры, калибраторы и многое другое измерительное оборудование.

В процессе эксплуатации внутри оксидных конденсаторов постоянно происходят электрохимические процессы, разрушающие место соединения вывода с обкладками. И из-за этого появляется переходное сопротивление, достигающее иногда десятков Ом. Токи Заряда и разряда вызывают нагрев этого места, что еще больше ускоряет процесс разрушения. Еще одной частой причиной выхода из строя электролитических конденсаторов является "высыхание", электролита. Чтоб уметь отбраковывать такие конденсаторы предлагаем радиолюбителям собрать эту несложную схему

Идентификация и проверка стабилитронов оказывается несколько сложнее чем проверка диодов, т.к для этого нужен источник напряжения, превышающий напряжение стабилизации.

С помощью этой самодельной приставки вы сможете одновременно наблюдать на экране однолучевого осциллографа сразу за восемью низкочастотными или импульсными процессами. Максимальная частота входных сигналов не должна превышать 1 МГц. По амплитуде сигналы должны не сильно отличаться, по крайней мере, не должно быть более 3-5-кратного отличия.

Устройство расчитано на проверку почти всех отечественных цифровых интегральных микросхем. Им можно проверить микросхемы серий К155, К158, К131, К133, К531, К533, К555, КР1531, КР1533, К176, К511, К561, К1109 и многие другие

Помимо измерения емкости, эту приставку можно использовать для измерения Uстаб у стабилитронов и проверки полупроводниковых приборов, транзисторов, диодов. Кроме того можно проверять высоковольтные конденсаторы на токи утечки, что весьма помогло мне при налаживание силового инвертора к одному медицинскому прибору

Эта приставка к частотомеру используется для оценки и измерения индуктивности в диапазоне от 0,2 мкГн до 4 Гн. А если из схемы исключить конденсатор С1 то при подключении на вход приставки катушки с конденсатором, на выходе будет резонансная частота. Кроме того, благодаря малому значению напряжения на контуре можно оценивать индуктивность катушки непосредственно в схеме, без демонтажа, я думаю многие ремонтники оценят эту возможность.

В интернете много разных схем цифровых термометров, но мы выбрали те которые отличается своей простотой, малым количеством радиоэлементов и надежностью, а пугаться того, что она собрана на микроконтроллере не стоит, т.к его очень легко запрограммировать.

Одну из схем самодельного индикатора температуры со светодиодным индикатором на датчике LM35 можно использовать для визуальной индикации плюсовых значений температуры внутри холодильника и двигателя автомобиля, а также воды в аквариуме или бассейне и т.п. Индикация выполнена на десяти обычных светодиодах подключенных к специализированной микросхеме LM3914 которая используется для включения индикаторов с линейной шкалой, и все внутренние сопротивления ее делителя обладают одинаковыми номиналами

Если перед вами встанет вопрос как измерить частоту вращения двигателя от стиральной машины. Мы подскажем простой ответ. Конечно можно собрать простой стробоскоп, но существует и более грамотная идея, например использованием датчика Холла

Две очень простые схемы часов на микроконтроллере PIC и AVR. Основа первой схемы микроконтроллер AVR Attiny2313, а второй PIC16F628A

Итак, хочу сегодня рассмотреть очередной проект на микроконтроллерах, но еще и очень полезный в ежедневных трудовых буднях радиолюбителя. Это цифровой вольтметр на микроконтроллере. Схема его была позаимствована из журнала радио за 2010 год и может быть с легкостью переделана под амперметр.

Эта конструкция описывает простой вольтметр, с индикатороми на двенадцати светодиодах. Данное измерительное устройство позволяет отображать измеряемое напряжение в диапазоне значений от 0 до 12 вольт с шагом в 1 вольт, причем погрешность в измерении очень низкая.

Рассмотрена схема измерителя индуктивности катушек и емкости конденсаторов, выполненная всего на пяти транзисторах и, несмотря на свою простоту и доступность, позволяет в большом диапазоне определять с приемлемой точностью емкость и индуктивность катушек. Имеется четыре поддиапазона для конденсаторов и целых пять поддиапазонов катушек.

Думаю большинству понятно, что звучание системы во многом определяется различным уровнем сигнала на ее отдельных участках. Контролируя эти места, мы можем оценить динамику работы различных функциональных узлов системы: получить косвенные данные о коэффициенте усиления, вносимых искажениях и т.п. Кроме того, результирующий сигнал просто не всегда можно прослушать, поэтому и, применяются различного рода индикаторы уровня.

В электронных конструкциях и системах встречаются неисправности, которые возникают достаточно редко и их очень сложно вычислить. Предлагаемое самодельное измерительное устройство используется для поиска возможных контактных проблем, а также дает возможность проверять состояние кабелей и отдельных жил в них.

Основой этой схемы является микроконтроллер AVR ATmega32. ЖК дисплей с разрешением 128 х 64 точек. Схема осциллографа на микроконтроллере предельно проста. Но есть один существенный минус - это достаточно низкая частота измеряемого сигнала, всего лишь 5 кГц.

Эта приставка здорово облегчит жизнь радиолюбителя, в случае если у него появится необходимость в намотке самодельной катушки индуктивности, или для определения неизвестных параметров катушки в какой либо аппаратуре.

Предлагаем вам повторить электронную часть схемы весов на микроконтроллере с тензодатчиком, прошивка и чертеж печатной платы к радиолюбительской разработке прилагаеться.

Самодельный измерительный тестер обладает следующими Функциональными возможностями: измерение частоты в диапазоне от 0.1 до 15000000 Гц с возможностью изменения времени измерения и отображением значение частоты и длительности на цифровом экране. Наличие опции генератора с возможностью регулировки частоты во всем диапазоне от 1-100 Гц и выводом результатов на дисплей. Наличие опции осциллограф с возможностью визуализации формы сигнала и измерения его амплитудного значения. Функция измерения емкости, сопротивления, а также напряжения в режиме осциллографа.

Простым методом измерения тока в электрической цепи является способ измерение падения напряжения на резисторе, соединенным последовательно с нагрузкой. Но при протекании тока через это сопротивление, на нем генерируется ненужная мощность в виде тепла, поэтому его необходимо выбрать минимально возможной величиной, что ощутимо усиливает полезный сигнал. Следует добавить, что рассмотренные ниже схемы позволяют отлично измерять не только постоянный, но и импульсный ток, правда, с некоторым искажением, определяемый полосой пропускания усилительных компонентов.

Устройство используется для измерения температуры и относительной влажности воздуха. В качестве первичного преобразователя взят датчик влажности и температуры DHT-11. Самодельный измерительный прибор можно использовать в складских и жилых помещениях для мониторинга температуры и влажности, при условии, что не требуется высокая точность результатов измерений.

В основном для измерения температуры применяются температурные датчики. Они имеют различные параметры, стоимость и формы исполнения. Но у них имеется один большой минус, ограничивающий практику их использования в некоторых местах с большой температурой среды объекта измерения с температурой выше +125 градусов по Цельсию. В этих случаях намного выгоднее использовать термопары.

Схема межвиткового тестора и его работа довольна проста и доступна для сборки даже начинающими электронщиками. Благодаря этому прибору сможно проверить практически любые трансформаторы, генераторы, дроссели и катушеки индуктивности номиналом от 200 мкГн до 2 Гн. Индикатор способен определить не только целостность исследуемой обмотки, но и отлично выявляет межвитковое замыкание, а кроме того им можно проверить p-n переходы у кремниевых полупроводниковых диодов.

Для измерения такой электротехнической величины, как сопротивление используется измерительный прибор называемый Омметр. Приборы, измеряющие только одно сопротивление, в радиолюбительской практике используются достаточно редко. Основная масса пользуется типовым мультиметров в режиме измерения сопротивления. В рамках данной темы рассмотрим простую схему Омметра из журнала Радио и еще более простую на плате Arduino.


Продолжу описание программы LIMP из пакета фирмы Arta Software . С ее помощью можно определять номиналы сопротивлений, индуктивностей, емкостей. Для этого достаточно компьютера, бесплатной программы и аппаратной части из одного резистора и нескольких шнуров.

Конечно, этот измеритель не может заменить специализированные приборы ни по удобству, ни по точности измерений, но покупать дорогостоящий прибор ради нескольких измерений не всегда целесообразно. Предлагаемый инструмент чисто радиолюбительский - измерения медленные и требуют определенной работы мозга и рук, зато бесплатно и своими руками.

Аппаратная часть

Из деталей надо 2 разъема 3,5 мм для звуковой карты с экранированными проводами, резистор примерно 100 Ом, переключатель с одной группой контактов (или аналог. кнопка) любой, два крокодила или зажима.

Мне самому было интересно покопаться. ARTA пишет, что для точности желательно, чтобы Z было менее 100 Ом, гораздо меньше, чем входное сопротивление звуковой карты (якобы оно примерно 20 кОм). Думаю, что очень низкое Z при измерении очень больших емкостей, тоже ухудшает точность, но на практике мало интересно - емкость 20000 мкФ или 22000 мкФ, важнее знать, что эта емкость есть, не высохла, а если есть нужда в подборе одинаковых емкостей, то абсолютное значение тоже не так важно. Еще раз напоминаю - смотрите результат при фазе для конденсаторов около -90, а индуктивностей +90. Кстати, у конденсаторов с плохой термозависимостью видно как изменяется Z от тепла пальцев.

Можно проверить древние емкости из запасов (ESR не видно, а жаль), падение емкости из-за высыхания или обрыва, видно сразу.
Нет слов, специальные приборы в 1000 раз лучше, но они денег стоят и место занимают.

Измерения сопротивлений

Сначала я даже хотел опустить этот пункт - дешевые цифровые китайские тестеры есть у всех, но подумав, нашел случаи, когда данный метод может быть полезен.
Это измерение малых сопротивлений - до 0,1 Ом включительно. Сначала надо откалибровать прибор и замкнуть его щупы. С длинным шнуром у меня получилось 0,24 Ом. Эту величину будем вычитать из всех измерений низкоомных резисторов. У меня есть горсть резисторов С5-16МВ-5 на 3,9 Ом с точностью 1%.


Все проверенные резисторы дали такой результат. 4,14 – 0,24 = 3,9
Для проверки была измерена горсть других низкоомных резисторов, без замечаний. Самым низкоомным был на 0,51 Ом +- 5%. Измеренное значение 0,5 Ом. К сожалению, не смог найти в своих запасах 0,1 Ом, но я уверен, что и с ними не было бы проблем, нужны только зажимы с хорошими контактами.
Кроме измерения сопротивления низкоомных резисторов, интерес, особенно для фильтров акустических систем, представляет их индуктивность. Они же проволочные, намотаны в катушку. Насколько же существенна их индуктивность? Я проверял в основном низкоомные (до 20 Ом) резисторы (в акустику и усилители высокоомные не ставят) типов С5-16МВ, С5-37В, С5-47В, ПЭВР-25, С5-35В. Их индуктивность была в диапазоне 2…6 микроГенри. При измерениях резисторов в сотни Ом, их индуктивность была на порядок выше.

Измерения индуктивностей

Плавно переходим к индуктивностям. У меня сейчас нет точных индуктивностей, поэтому я просто проверил качественную, но не количественную работоспособность метода.


Это измерения дросселя ДМ-0,1 на 30 мкГн, получилось правдоподобно.


Вот дроссель из импульсного блока питания. Тоже похоже на правду. За точность не ручаюсь - здесь есть место для исследований.

Измерения емкостей

Самая интересная часть, есть непонятное, но результаты очень интересные. Диапазон измерений от 0,1 мкФ до 100 000 мкФ. Точность - несколько процентов. Более-менее терпимые результаты получаются от 0,01 мкФ, но измерения на низких частотах длинным шнуром с большой емкостью, малоцелесообразны. Я исходил из того, что интерес представляют емкости порядка долей-единиц мкФ для фильтров акустических систем и регуляторов тембра, разделительных конденсаторов УНЧ. Была надежда увидеть ESR (не оправдалась). Поскольку прецизионных емкостей я у себя не нашел, пришлось использовать статистический метод и здравый смысл. Сначала я сделал и хотел представить большую таблицу, но потом очевидная истина дошла и до меня, для вас только результаты.


Это конденсатор 0,15 MKP X2. На какой частоте измерять? Arta освещает это невнятно. Говорят, что надо измерять при импедансе менее 100 Ом (одна клетка на графике слева 800 Ом)…
На 200 Гц получается 0,18 мкФ, на 20 кГц - 0,1 мкФ. Из основ электротехники известно, что ток в емкости опережает напряжение (-90 град), в индуктивности - наоборот (+90 град), поэтому руководствуемся серой кривой и числом сдвига фазы справа. Лучше, если сдвиг будет близок к 90 град. К сожалению, из-за ограниченного частотного диапазона, это не всегда получается, кроме того, нередко около 20 кГц сдвиг фазы уменьшается, не будем лезть в эту область!


Вот и пример. Это неполярный оксидный конденсатор 2,2 мкФ на 15 В. Есть сильное подозрение в его низком качестве и непригодности для аудиофилов. У неэлектролитических конденсаторов на большее напряжение фазовый график другой. Здесь же наиболее достоверные результаты в области 0,5…1 кГц.


Конденсатор 1 мкФ К10-47В на 50 В ТКЕ Н30. Достоверный и стабильный результат в диапазоне частот 1…20 кГц при фазовом сдвиге 85…90 град.
Любопытство потянуло меня посмотреть: а что будет, если измерять оксидные (электролитические) конденсаторы? Оказалось, что измерять можно! Результат абсолютно не зависит от полярности подключения, я измерил даже 4 банки по 10 000 мкФ соединенные параллельно и получил достоверный результат. О достоверности я могу судить потому, что до этого измерил десятки конденсаторов от 1 до 15 000 мкФ.


Получилось 44 миллиФарады. Обратите внимание на фазовую характеристику в области нескольких кГц, она приобретает характер индуктивности. Что это - несовершенство инструмента или действительно на таких частотах емкость обкладок работает хуже, а индуктивность рулона обмотки говорит все громче? Параллельное подключение небольшой пленочной емкости на график не повлияло.
В силу того, что загрузка графики в пост ограничена, я привожу минимум примеров, поэтому просто повторю, что измерять надо при максимально «правильной» фазе (при переходе через 0 вы из емкости получите «индуктивность» и наоборот).


Бывает и такое. Это одна из старых выпаянных оксидных емкостей. Явно, ей место на свалке. Представляете, что такая емкость сделает со звуком?!
Можно попасть и в такую ловушку.