Пороговое напряжение. Пробник полевых транзисторов Время выключения диода


Полупроводниковые диоды являются коммерчески доступными элементами электронных схем. Именно на них и строятся выпрямители. Номенклатура диодов чрезвычайно обширна. Для грамотного их использования в выпрямителях необходимо знать и понимать смысл их основных технических характеристик.

Ниже рассматриваются основные статические характеристики полупроводниковых диодов.

2.1. Пороговое напряжение

Пороговым напряжением U пг называется такое значение напряжения на переходе, начиная с которого полупроводниковый диод проводит ток. При прямых напряжениях, меньших порогового, диод ток практически не проводит. Принято считать пороговым напряжение, равное 0,7В у кремниевых приборов и 0,3В – у германиевых. Как отмечалось выше, фактическое падение напряжения между выводами диода U д всегда больше порогового U пг , (рис. 10, а ).

У кремниевых приборов фактическое падение напряжения составляет

1 В. Пороговое напряжение разнится от образца к образцу, даже у однотипных приборов (рис. 10, б ). У дискретных диодов эта разница может достигать 0,1В. У диодов, изготавливаемых средствами интегральной технологии, она не превышает 0,01В. Поэтому прямые ветви вольтамперных характеристик полупроводниковых приборов не совпадают.

Пороговое напряжение полупроводниковых диодов зависит также и от температуры. Оно уменьшается со скоростью – 2,5 мВ/0 С при повышении температуры перехода. Это значит, что если даже прямые ветви характеристик двух диодов первоначально совпадали (рис. 10, в ), то при нагреве, например, диода 1 до температуры, превышающей температуру диода 2 , прямая ветвь вольт-амперной характеристики 1-го диода сместится влево (пунктир на рис. 10, в ).

2.2. Номинальный ток

Под номинальным понимают максимальный постоянный ток, который может протекать через диод сколь угодно долго без разрушения прибора. Понятие номинального тока связано с понятием допустимой мощности рассеяния в диоде.

При протекании тока I пр через прибор из-за конечного падения напряжения U пр на нем, в приборе выделяется мощность Р в =U пр I пр . Это приводит к нагреву перехода, т. е. превышению его температуры T п над температурой окружающей среды T 0 . Последнее обуславливает отток тепла от перехода в окружающую среду, то есть рассеяние мощности. Рассеяние мощности тем больше, чем выше температура перехода T п по сравнению с температурой окружающей среды T 0 . Очевидно, что при P в =const увеличение мощности рассеяния P рас , обусловленное ростом температуры перехода может привести к тепловому равновесию P в =P рас , наблюдаемому при некоторой температуре перехода. Связь между мощностью рассеяния P рас и перепадом температур T =T п –T 0 принимается линейной при небольших перепадах температур T . Эту связь принято записывать в виде соотношения T=R T P рас подобного закону Ома для резистивных электрических цепей. Коэффициент R Т называется термическим сопротивлением участка переход – среда. Определяется R Т практически площадью поверхности корпуса диода. Поскольку корпуса диодов унифицированы, то каждому конкретному типу диода соответствует вполне определенное значение R Т .

Как известно, температура p -n -переходов ограничивается некоторым допустимым значением T п дп , превышение которого означает выход прибора из строя. Для кремниевых приборов T п дп ≈ (175÷ 200)° С, а для герма-

ниевых T п дп ≈ (125÷ 150)° С.

Отсюда следует, что при комнатной температуре, для каждого конкретного типа диода существует понятие допустимой мощности рассеяния

T пдп − T 0 P рас.дп(T пдп) R Т .

Тем самым в условиях теплового равновесия ограничивается и выделяемая в приборе мощность:

T пдп − T 0

С учетом приблизительного постоянства прямого падения напряжения на полупроводниковых диодах

P выд дп = I д дпU п = I д дп const ≈ I д дп 1В = | I д дп |.

Отсюда следует: I ддп = T пдп − T 0 . В силу постоянства U п = 1В мощ-

ность, выделяющаяся в диоде, определяется средним током через диод.

Тогда I д дп = I ср дп.

По этой причине средний ток через диод, оговариваемый в технической документации, является допустимым значением среднего тока при комнатной температуре. С увеличением температуры окружающей среды этот ток должен соответственно уменьшаться во избежание выхода диода из строя. Увеличение I ср дп возможно за счет уменьшения R Т . Это означает необходимость увеличения теплоотводящей поверхности диода, то есть добавления к нему теплоотвода.

Как следует из изложенного, I ср дп является мерой допустимой мощности рассеяния в диоде. Так диод со средним током в 1А в состоянии рассеять при комнатной температуре мощность, приблизительно равную 1 Вт.

Таким образом, для каждого конкретного типа прибора существует понятие тока, допустимого при комнатной температуре, превышение которого приводит к сгоранию диода. Номинальный ток, как ток, гарантирующий надежную эксплуатацию диода, выбирается меньше допустимого.

Номинальный ток через диод уменьшается с ростом температуры окружающей среды. Его можно и увеличивать посредством уменьшения R Т . Это достигается увеличением теплоотводящей поверхности диода – к корпусу диода присоединяют специальный конструктивный элемент называемый теплоотводом.

2.3. Пиковый (максимальный) ток

Пиковые или максимальные токи через диод могут существенно превышать их номинальные значения. Вопрос о пиковых токах более сложен, нежели о номинальных. Допустимые значения пиковых токов в диодах зависят не только от величин, но и длительности, а также от частоты их повторения. Так при частоте порядка 50 Гц пиковые токи длительностью 5 мс могут превышать номинальные в 10 – 20 раз. При уменьшении длительности до 2 мс импульсы токов могут превышать номинальный ток в 50 – 100 раз. Чаще всего фактические характеристики импульсных токов в электрических цепях трудно определимы. По этой причине лучше не допускать превышения их официальных допустимых значений.

2.4. Обратный ток диода

Обратный ток при комнатной температуре пренебрежимо мал в кремниевых приборах, но существенен в германиевых. К сожалению, этот ток

экспоненциально растет с ростом температуры перехода. Его можно грубо оценить формулой

I о (T 1 ) = I о (T 0 ) 2(T 1 − T 0 )/10 ,

где I о (T 1 ) – обратный ток при температуре перехода T 1 ; I о (T 0 ) – обратный ток, замеренный при температуре перехода T 0 . Естественно, что оценка тока по этой формуле тем достовернее, чем меньше T =T 1 –T 0 .

2.5. Обратное напряжение

Обратное напряжение U об , как техническая характеристика диода ставится в соответствие напряжению его пробоя. Естественно, оно меньше напряжения пробоя, ибо в режиме пробоя диод утрачивает свойство односторонней проводимости – перестает быть диодом. Обычно U об определяется с некоторым запасом.

Помимо перечисленных статических технических характеристик диода существуют еще и динамические. Наиболее существенные рассматриваются ниже.

2.6. Динамическое сопротивление диода

Поскольку при U пр >0,1 В прямая ветвь вольт-амперной характеристики диода определяется соотношением (2), то динамическое сопротивление прибора – его сопротивление приращениям прямого тока через переход – может быть определено простой процедурой:

∂i

/ϕ Т

I пр

или r =

∂u

2.7. Время выключения диода

Идеальный диод, включенный в цепь последовательно с резистивной нагрузкой (рис. 11, а ) пропускает ток только в прямом направлении. При изменении знака напряжения в цепи U ц обратный ток через диод прекра-

щается (рис. 11, б и в ).

В реальных полупроводниковых диодах размыкание цепи при мгновенном изменении знака напряжения цепи с прямого на обратный происходит не сразу. Дело в том, что при прохождении через кристалл прямой ток насыщает его основными носителями. Их концентрация в кристалле пропорциональна величине прямого тока. Для того чтобы диод разомкнул цепь, чтобы кристалл стал непроводящим, необходимо удалить основные носители тока из кристалла, т. е. создать обедненную зону на границе контакта слоев p и n- полупроводника. Этот процесс требует времени. В течение этого времени – времени рассасывания носителей t р – диод проводит ток в обратном направлении, так же как и в прямом (рис. 12).

U ц

U ц

По окончании процесса рассасывания имеет место процесс медленного спада обратного тока через диод до значения I 0 (рис. 12, а ). Время рассасывания и время спада в сумме образуют время выключения диода. Время выключения диода t выкл является технической характеристикой диода.

U ц

t вкл

U ц

В радиолюбительских конструкциях все чаще встречаются полевые транзисторы (ПТ), особенно в схемах УКВ аппаратуры. Но многие отказываются от их сборки, хотя схемы простые, проверенные временем, так как в них применяются ПТ к которым предъявляются особые требования по описанию схем. В журналах и интернете описано много приборов и испытателей ПТ (5,6), но они сложны, ведь в домашних условиях сложно измерить основные параметры ПТ. Приборы для испытания ПТ очень дороги и покупать их ради подбора двух, трех ПТ нет смысла.

Схема испытателя для полевых транзисторов (уменьшенная)

В домашних условиях возможно измерить, приблизительно, основные параметры ПТ и подобрать их. Для этого необходимо иметь как минимум два прибора, одним из которых измеряют ток, а другим напряжение, и два источника питания. Собрав схему (1, 2) вначале необходимо резистором R1 установить нулевое напряжение на затворе VT1, движок R1 в нижнем положение резистором R2 установить напряжение сток-исток Uси VT1 по справочнику, для проверяемого транзистора, обычно 10-12 вольт. Затем подключают прибор PA2, переведенный в режим измерения тока, в цепь стока и снимают показание, Iс.нач это начальный ток стока, его еще называют током насыщения ПТ при заданном напряжение сток-исток и нулевом напряжение затвор-исток. Затем медленно перемещая движок R1 за показанием PA2 и как только ток упадет практически до нуля (10-20 мкА) измерить напряжение между затвором и истоком, данное напряжение будет напряжением отсечки Uотс..


Чтобы измерить крутизну характеристики SмА/В ПТ нужно снова устанавливают нулевое напряжение Uзи резистором R1, PA2 покажет Iс.нач. Резистором R1 так же медленно увеличивают напряжение Uзи до одного вольта по PA1, для упрощения расчета, PA2 покажет меньший ток Ic.измер. Если теперь разность двух показаний PA2 разделить на напряжение Uзи получившийся результат будет соответствовать крутизне характеристики:

SмА/В=Iс.нач - Iс.измер/Uзи.

Так проверяются транзисторы с управляющим с p-n переходом и каналом p-типа, для ПТ n-типа нужно поменять полярность включения Uпит на обратное.

Существуют также полевые транзисторы с изолированным затвором. Существуют две разновидности МДП-транзисторов с индуцированным и со встроенным каналами.

Транзисторы первого типа можно использовать только в режиме обогащения. Транзисторы второго типа могут работать как в режиме обеднения, так и в режиме обогащения канала. Поэтому полевые транзисторы с изолированным затвором часто называют МДП-транзисторами или МОП-транзисторами (металл - оксид- полупроводник).


В МОП-транзисторах с индуцированным каналом проводящий канал между сильнолегированными областями истока и стока и, следовательно, заметный ток стока появляются только при определенной полярности и при определенном значении напряжения на затворе относительно истока (отрицательного при р-канале и положительного при n-канале). Это напряжение называют пороговым (Uпор). Так как появление и рост проводимости индуцированного канала связаны с обогащением его основными носителями заряда, эти транзисторы могут работать только в режиме обогащения.

В МОП - транзисторах со встроенным каналом проводящий канал, изготавливается технологическим путем, образуется при напряжении на затворе равном нулю. Током стока можно управлять, изменяя значение и полярность напряжения между затвором и истоком. При некотором положительном напряжении затвор - исток транзистора с р - каналом или отрицательном напряжении транзистора с n -каналом ток в цепи стока прекращается. Это напряжение называют напряжением отсечки (Uотс). МОП - транзистор со встроенным каналом может работать как в режиме обогащения, так и в режиме обеднения канала основными носителями заряда.

Работа МОП-транзистора с индуцированным p-каналом . При отсутствии смещения (Uзи = 0; Uси = 0) приповерхностный слой полупроводника обычно обогащен электронами. Это объясняется наличием положительно заряженных ионов в пленке диэлектрика, что является следствием предшествующего окисления кремния и фотолитографической его обработки.

Напряжение на затворе, при котором индуцируется канал, называют пороговым напряжением Unoр. Так как канал возникает постепенно, по мере увеличения напряжения на затворе, то для исключения неоднозначности в его определении обычно задается определенное значение тока стока, при превышении которого считается, что потенциал затвора достиг порогового напряжения Unop.


В транзисторах с встроенным каналом ток в цепи стока будет протекать и при нулевом напряжении на затворе. Для прекращения его необходимо к затвору приложить положительное напряжение (при структуре с каналом p-типа), равное или большее напряжения отсечки Uотc.

При приложении отрицательного напряжения канал расширяется и ток увеличивается. Таким образом, МДП-транзисторы с встроенными каналами работают как в режиме обеднения, так и в режиме обогащения.

Иногда в структуре полевого МОП транзистора между истоком и стоком присутствует встроенный диод. На работу транзистора диод не влияет, поскольку в схему он включен в обратном направлении. В последних поколениях мощных МОП-транзисторов встроенный диод используется для защиты транзистора.

Основными параметрами полевых транзисторов считаются;

1 . Начальный ток стока Iс.нач - ток стока при напряжении между затвором и истоком, равном нулю. Измеряют при заданном для транзистора данного типа значении постоянного напряжения Uси.

2 . Остаточный ток стока Iс.ост - ток стока при напряжении между затвором и истоком, превышающем напряжение отсечки.

3 . Ток утечки затвора Iз.ут - ток затвора при заданном напряжении между затвором и остальными выводами, замкнутыми между собой.

4 . Обратный ток перехода затвор - сток Iзс.о - ток, протекающий в цепи затвор - сток при заданном обратном напряжении между затвором и стоком и разомкнутыми остальными выводами.

5 . Обратный ток перехода затвор - исток Iзи.о - ток, протекающий в цепи затвор - исток при заданном обратном напряжении между затвором и истоком и разомкнутыми остальными выводами.

6 . Напряжение отсечки Uотс - напряжение между затвором и истоком транзистора с р-n переходом или изолированным затвором, работающего в режиме обеднения, при котором ток стока достигает заданного низкого значения (обычно 10 мкА).

7 . Пороговое напряжение полевого транзистора Uпор - напряжение между затвором и истоком транзистора с изолированным затвором, работающего в режиме обогащения, при котором ток стока достигает заданного низкого значения (обычно 10 мкА).

8 . Крутизна характеристик полевого транзистора S - отношение изменения тока стока к изменению напряжения на затворе при коротком замыкании по переменному току на выходе транзистора в схеме с общим истоком.


Для этих измерений необходимо ввести еще и переключатель полярности напряжения между затвором и истоком. Комутируя этим переключателем полярность подаваемую на затвор проверяемого транзистора измеряют параметры ПТ. Процедура довольно долгая, а как быть если в наличие только один тестер. И в этом случае возможно проверить полевой транзистор, процесс проверки тот же что и описан выше, но только еще более длительный, так как нужно будет сделать очень много переключений и других операций. Такой способ для проверки и подборки ПТ не пригоден при покупке в магазинах и радиорынках.

Как известно собрать вольтметр постоянного тока намного проще чем миллиамперметр, имея одну и туже головку, а комбинированные приборы есть у каждого радиолюбителя, даже у начинающих. Собрав прибор по схеме приведенной на рисунке, можно значительно облегчить процедуру проверки ПТ во много раз. Данный прибор могут сделать даже начинающие радиолюбители не имеющие опыта работы с ПТ. Прибор питается от 9 вольт от стабилизированного преобразователя напряжения собранной по схеме из журнала Радио (3).

Принцип измерений параметров ПТ. Установив переключатели SA1-SA3, SB2 в нужное полжения, в зависимости от типа и канала проверяемого ПТ, подключают любой тестер, стрелочный или цифровой (предпочтительней), в гнезда XS1, XS2, переведенном в режим измерения постоянного тока, к гнездам XS3 подключить в соответствие с цоколем ПТ и включают прибор переключателем SA4.

Все компоненты прибора установлены в подходящий корпус, размер которого зависит от размеров компонентов и примененной головки PA1. На лицевой стороне расположены PA1, SA1-SA3, XS1-XS2, R1, R2 с соответствующими надписями обозначающими функции. Преобразователь установлен в корпусе прибора, из которого выведен разъем для подключения к батарейке GB1.

Детали пробника

PA1 - микроамперметр типа М4200 с током 300 мкА, со шкалой на 15 В, возможно использовать другие, от его габаритов завесит размер корпуса, при подборе R3, R4 при настройке, R1, R2 - СП4-1, СПО-1 сопротивлением от 4,7 кОм до 47 кОм, R3, R4 - МЛТ-0,25, С2-23 и другие. Переключатели SA1 - 3П12НПМ, 12П3Н,ПГ2, ПГ3, П2К, SB1 - П2К. Тумблеры SA2 - SA4 - МТ-1, П1Т-1-1 и другие.

Трансформатор ТР1 в преобразователе выполнен в ферритовом броневом магнитопроводе внешним диаметром 30 и высотой 18 мм. Обмотка I содержит 17 витков провода ПЭЛ 1,0, обмотка II - 2х40 витков провода ПЭЛ 0,23. Возможно использовать другой сердечник с соответствующим перерасчетом.

Транзисторы VT1 - КТ315, КТ3102, VT2, VT3 - КТ801А, КТ801Б, VT4 - КТ805Б и другие, диоды VD1, VD2 - КД522, КД521, VD4-VD7 - КД105, КД208, КД209 или диодный мост КЦ407, микросхема DD1 - К555ЛН1, К155ЛН1.

В качестве XS3 используется кроватка для микросхем установленная на печатной плате и распаянная под тип ПТ (расположение выводов) для того чтобы не загибать выводы ПТ или другой разъем распаянный соответствующим образом. Монтаж объемный. На дно (задняя крышка) установлена плата преобразователя.

Настройка испытателя полевых транзисторов

Налаживание прибора практически не требуется. Правильно собранный преобразователь, из исправных деталей, начинает работать сразу, выходное напряжение 15 В устанавливают подстроечным резистором R4 контролируя напряжение вольтметром.

Затем движки резисторов R1, R2 устанавливают в нижнее по схеме положение, что соответствует нулевым напряжениям. Переключатель SA3 переводят в положение 1,5 В, а SA2 в положение Uзи. Подключив контрольный вольтметр к движку R1 перемещают его контролируя показание PA1 по контрольному вольтметру и если оно отличается подбирают сопротивление резистора R3. После подбора резистора R3 переключают SA3 в положение 15 В и далее перемещают движок R3 контролируя напряжение и если оно также не соответствует подбирают R4. Таким образом настраивают внутренний вольтметр прибора. После всех настроек закрывают заднюю крышку, прибор готов к работе.


Как показывает практика, для радиолюбителя важны следующие положения:

1. Проверить исправность ПТ. Для этого обычно достаточно убедиться, что параметры его стабильны, не «плывут» и находятся в пределах справочных данных.

2. Выбрать по определенным характеристикам из имеющихся у радиолюбителя всего нескольких экземпляров ПТ те, что больше подходят для применения в собираемой схеме. Обычно здесь работает качественный принцип «больше - меньше».

Например, нужен полевой транзистор с большей S или меньшим напряжением отсечки. И из нескольких экземпляров выбирают тот, у которого лучше (больше или меньше) выбранный показател. Таким образом, высокая точность измеряемых параметров на практике часто не столь важна, как можно было бы думать.
Тем не менее, предлагаемый прибор позволяет с достаточно высокой точностью проверить работоспособность и важнейшие характеристики ПТ.

Работа с прибором

Перед включением прибора переключателем SA1 устанавливают тип канала, SB2 устанавливают в обогащенный режим, резисторы R1, R2 устанавливают в нулевые положения, подключают к гнездам XS1 и XS2 тестер переведенный в режим для измерения тока на предел который указан в справочнике для данного ПТ, цифровой тестер с автоматическим изменением предела предпочтителен так как не нужно будет переключать пределы при измерениях. Переводят SA2 в положение Uси, а SA3 в положение 15 В.

Вставляют полевой транзистор в разъем XS3 в соответствие с цоколем проверяемого ПТ. Включив прибор резистором R2 устанавливают напряжение сток-исток Uси указанное в справочнике для данного транзистора. Переводят SA2 в положение Uзи, а SA3 в 1,5 В. Нажимают кнопку SB1 "Измер." при этом тестер PA2 покажет какое то значение, например 0,8 мА на пределе 1 мА, это значение указывает начальный ток стока Iс.нач. Записывают это значение для данного ПТ. Затем медленно перемещают движок R1 "Uзи" контролируя при этом напряжение на затворе по PA1, напряжение Uзи увеличивают до тех пор пока ток стока Iс измеряемый тестером PA2 не уменьшится до минимального заданного как правило 10-20 мкА, переключая PA2 на пределы ниже. Как только ток уменьшится до заданного значения, снимают показание с PA1 (например 0,9 В), это напряжение является напряжением отсечки ПТ Uотс., его так же записывают.

Для измерения крутизну характеристики SмА/В устанавливают тестер PA2 на тот предел который был установлен первоначально для данного транзистора и уменьшают Uзи до нуля, PA2 покажет Iс.нач. Резистором R1 медленно увеличивают Uзи до 1 В по PA1, PA2 покажет меньший ток Iс.измер. Если теперь вычесть из Iс.нач Iс.измер это и будет соответствовать численному значению крутизны характеристики SмА/В ПТ. Цифровой тестер с автоматическим изменением пределов предпочтительнее.

Таким образом можно будет подобрать ПТ с близкими параметрами из одной партии с одинаковыми или разными буквенными индексами, ведь разные индексы указывают лишь на разброс параметров ПТ, так КП303А имеют Uотс. - 0,3-3,0 В, SмА/В - 1-4, а КП303В Uотс. - 1,0 - 4,0 В, SмА/В - 2-4, но некоторые ПТ с разными индексами могут иметь одинаковые значения при заданом напряжение сток-исток Uси. что не мало важно при подборке ПТ.

Измерение параметров полевых транзисторов МОП-типа с встроенным каналом, режим обеднения. Переключателем SA1 устанавливают тип канала, SB2 устанавливают в режим обеднения, резисторы R1, R2 устанавливают в нулевые положения, подключают к гнездам XS1 и XS2 тестер переведенный в режим для измерения тока на предел который указан в справочнике для данного ПТ. Переводят SA2 в положение Uси, а SA3 в положение 15 В. Вставляют ПТ в разъем XS3 в соответствие с цоколем проверяемого ПТ. У двузатворных или с подложкой ПТ второй затвор, подложку подключают к контакту корпус "К" разъема XS3. Резистором R2 устанавливают напряжение сток-исток Uси указанное в справочнике для данного транзистора. Затем переводят SA2 в положение Uзи, а SA3 в положение 1,5 В. PA2 переводят в режим измерения минимального тока. Включив прибор нажимают кнопку SB1, микроамперметр PA2 покажет какой-то ток это и будет начальный ток стока Iс.нач.

При увеличение напряжения Uзи ток стока Iс будет уменьшатся и при определенном значение станет минимальным около 10 мкА, снятое показания с РА2 будет напряжением отсечки Uотс.

Для проверки транзистора в режиме обогащения переключатель SB2 переводят в положение "Обогащения" и увеличивают напряжение на затворе Uзи при этом ток стока Iс будет увеличиваться.

Как было сказано выше, МОП-транзисторы с индуцированным каналом могут работать только в режиме обогащения. Измерение параметров полевых транзисторов МОП-типа с индуцированным каналом. Переключателем SA1 устанавливают тип канала, SB2 устанавливают в режим обогащения, резисторы R1, R2 устанавливают в нулевые положения, подключают к гнездам XS1 и XS2 тестер переведенный в режим для измерения тока на предел который указан в справочнике для данного ПТ. Переводят SA2 в положение Uси, а SA3 в положение 15 В. Вставляют ПТ в разъем XS3 в соответствие с цоколем проверяемого ПТ.

У двузатворных или с подложкой ПТ второй затвор, подложку подключают к контакту корпус "К" разъема XS3. Резистором R2 устанавливают напряжение сток-исток Uси указанное в справочнике для данного транзистора. Затем переводят SA2 в положение Uзи, а SA3 в положение 1,5 В. PA2 переводят в режим измерения минимального тока. Включив прибор нажимают кнопку SB1. При Uзи = 0 ток стока Iс = 0.

Увеличивая напряжение Uзи следят за изменением тока стока Iс и при некотором напряжение Uзи ток стока начнет увеличиваться это будет пороговым напряжением Uпор. При дальнейшем его увеличение будет увеличиваться ток стока Iс.

Данным прибором можно измерять параметры Iс.нач, Uотс., S ма/В ПТ средней и большой мощности, подав необходимое напряжение на внешний разъем XP1, по справочникам для данного ПТ, с добавлением необходимых пределов измерений внутренним вольтметром PA1, добавив необходимое число резисторов на переключатель SA3. Диоды VD5, VD6 при этом защищают преобразователь от внешнего напряжения.

Если не требуется измерений точных значений Iс.нач и Uотс., а только подобрать ПТ с близкими параметрами, можно вместо PA2 включить индикаторы применяемые в бытовой технике для контроля уровней сигналов, М4762, М68501, М4248, М4223 и подобные, добавив к данным индикаторам переключатель и шунты на разные токи. Все остальные измерения производят по описанному выше методу. Данным прибором пользуюсь уже более шести лет. Он очень помогает при конструирование аппаратуры на полевых транзисторах, где к ним применяются особые требования.

Литература:

1. Простейшие способы проверки исправности электрорадиоэлементов в ремонтных и любительских условиях, стр. 70, 300 практических советов. Бастанов В.Г. - Моск. рабочий 1986 г.
2. Измерение параметров и применение полевых транзисторов, - "Радио", 1969, №03, стр. 49-51
3. Стабилизированный преобразователь напряжения - Радио №11 1981 стр. 61 (за рубежом).
4. Занимательные эксперименты: некоторые возможности полевого транзистора - "Радио", номер 11, 1998г. Б.Иванов
5. Приставка для проверки транзисторов. Радио № 1 – 2004, стр. 58-59.
6. Испытатель полевых транзисторов - А. П. Кашкаров, А. Л. Бутов - Радиолюбителям схемы для дома стр. 242-246, МРБ-1275 2008г.
7. Измерение параметров полевых транзисторов, - "Радио", 2007, №09, стр. 24-26.
8. Меерсон А.М. Радиоизмерительная техника (3-е изд.). МРБ - Выпуск 0960 стр. 363-367. (1978)

Конструкцию прислал на конкурс:Слинченков Александр Васильевич г. Озерск, Челябинская обл.

Published Date: 24.12.2017

Пороговое напряжение

Пороговое напряжение — это точка, в которой электрическое устройство настроено для активации любой из своих операций. Обычно это происходит в транзисторе, который постоянно контролирует источник питания для изменений, игнорируя те, которые слабы или непреднамеренно просочились через систему. Как только заряд входящего электричества будет достаточным для соответствия установленному стандарту, пороговое напряжение будет удовлетворено, и для его включения разрешается протекать по всему устройству. Все, что находится ниже предопределенного порога, содержится и рассматривается как фантомный заряд.

Хотя определение порогового напряжения в устройстве с одной схемой может показаться относительно простым и простым, современная электроника требует довольно сложной математической формулы для установки и регулирования различных пороговых значений. Например, прибор, например, посудомоечная машина, может быть запрограммирован на выполнение 20 или более функций, зависящих от повседневных требований пользователя, и каждая отдельная фаза, в которую он входит, активируется электрическим зарядом. Эти незначительные изменения в мощности позволяют устройству знать, когда добавлять больше воды, когда активировать механизм сушки или как быстро вращать чистящие струи. Каждое из этих действий устанавливается на отдельное пороговое напряжение, поэтому, когда сразу необходимо активировать несколько элементов, для этого требуется много планирования для обеспечения правильной работы. Уравнение для расчета порогового напряжения представляет собой сумму статического напряжения, плюс вдвое больше объемного потенциала и напряжения на оксиде.

Пороговое напряжение обычно создается с помощью тонкого инверсионного слоя, который отделяет изоляционное и фактическое тело транзистора. Крошечные отверстия, которые положительно заряжены, покрывают поверхность этой области, и когда электричество подается, частицы в этих пустотах отталкиваются. Как только ток в пределах внутренней и внешней областей будет уравнен, транспондер позволяет высвободить энергию для завершения схемы, которая активирует процесс. Весь этот процесс завершается в течение миллисекунд, и транзистор постоянно перепроверяет, чтобы гарантировать, что текущий ток оправдан, подрывая мощность, когда это не так.

Другим термином, который используется при разговоре о транспондерах, является пороговое напряжение полевого транзистора (МОП-транзистора) из оксида металла. Эти проводящие переключатели спроектированы с положительными или отрицательными зарядами, как в приведенном выше примере, и они являются наиболее распространенным типом транзистора в аналоговых или цифровых устройствах. Транзисторы MOSFET первоначально были предложены в 1925 году и были построены на основе алюминия вплоть до 1970-х годов, когда кремний был обнаружен как более жизнеспособная альтернатива.

Еще по теме:

    Триггер напряжения Треугольник напряжения - это устройство, используемое для увеличения напряжения, поступающего от электропитания. Большинство…

    А Вы знаете, что такое обратное напряжение? Обратное напряжение Обратное напряжение - это тип сигнала…

    Множитель напряжения Множитель напряжения представляет собой электронное устройство, содержащее конкретные схемы увеличения напряжения, которые используются,…

    Удвоитель напряжения Удлинитель напряжения - это электрическое устройство, которое принимает в качестве входного переменного тока…

Навигация по записям

Полезно

Ремонт интерьер строительство

В течение жизненного цикла здания ремонтные работы в определенный период необходимы, чтобы обновить интерьер. Модернизация также необходима, когда дизайн интерьера или функциональность отстают от современности.

Многоэтажное строительство

В России насчитывается более 100 миллионов единиц жилья, а большинство из них — «односемейные дома» или коттеджи. В городах, в пригородах и в сельской местности, собственные дома являются очень распространенным видом жилья.
Практика проектирования, строительства и эксплуатации зданий чаще всего является коллективной работой различных групп профессионалов и профессий. В зависимости от размера, сложности и цели конкретного проекта здания команда проекта может включать:
1. Разработчик недвижимости, который обеспечивает финансирование проекта;
Один или несколько финансовых учреждений или других инвесторов, которые предоставляют финансирование;
2. Органы местного планирования и управления;
3. Служба, который выполняет ALTA / ACSM и строительные обследования в рамках всего проекта;
4. Руководители зданий, которые координируют усилия различных групп участников проекта;
5. Лицензированные архитекторы и инженеры, которые проектируют здания и готовят строительные документы;

Полевой транзистор. Определение. Обозначение. Классификация (10+)

Полевой транзистор

Полевой транзистор (FET) - электронный прибор, который позволяет регулировать ток, изменяя управляющее напряжение. Как я уже писал ранее, для проектирования электронных схем нет никакой необходимости иметь представление о физических принципах работы и устройстве электронного прибора. Достаточно знать, что это - черный ящик, обладающий определенными характеристиками. Ничего не изменится, если вдруг изобретут новую технологию, позволяющую делать приборы, по характеристикам похожие на полевые транзисторы, но основанные на других принципах. Мы будем их ставить в те же схемы и называть полевиками.

Определение полевого транзистора

Полевой транзистор - это прибор, обладающий четырьмя выводами: Исток, Сток, Затвор, Подложка. Управляющее напряжение прилагается между Затвором и Истоком. В большинстве случаев подложка внутри корпуса соединена с истоком, так что наружу торчат три вывода. Некоторые виды полевых транзисторов не имеют подложки (транзисторы с p-n переходом).

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.